<svg aria-hidden="true" height="16" style="fill: #57ab5a;" viewbox="0 0 16 16" width="16">
Mem0 是专为现代 AI 代理设计的内存层。它充当持久内存层,代理可以使用它来:
• 回忆过去的相关互动 • 存储重要的用户偏好和事实背景 • 从成功和失败中学习 它为 AI 代理提供记忆,以便他们可以在交互中记住、学习和进化。 官网:https://docs.mem0.ai/introduction
本教程基于 spring ai alibaba 接入 mem0 示例 实战代码可见:https://github.com/GTyingzi/spring-ai-tutorial 下的 advisor/advisor-memory-mem0 docker 启动配置项,可见 docker-compose/mem0
mem0 基础准备
在./spring-ai-tutorial/docker-compose/mem0 目录下
基础配置
1. cp ./.env.example .en,更新 OPENAIAPIKEY、DeepSeekAPIKEY
OPENAIAPIKEY=xxx
DEEPSEEKAPIKEY=xxx
POSTGRESHOST=postgres
POSTGRESPORT=5432
POSTGRESDB=postgres
POSTGRESUSER=postgres
POSTGRESPASSWORD=postgres
POSTGRESCOLLECTIONNAME=memories
NEO4JURI=bolt://neo4j:7687
NEO4JUSERNAME=neo4j
NEO4JPASSWORD=mem0graph
1. 配置 docker-compose.yaml 文件
name:mem0-dev
services:
mem0:
build:
context:..# Set context to parent directory
dockerfile:mem0/dev.Dockerfile
ports:
-"8888:8000"
envfile:
-.env
networks:
-mem0network
volumes:
-./history:/app/history# History db location. By default, it creates a history.db file on the server folder
-.:/app# Server code. This allows to reload the app when the server code is updated
-../mem0:/app/packages/mem0# Mem0 library. This allows to reload the app when the library code is updated
dependson:
postgres:
condition:servicehealthy
neo4j:
condition:servicehealthy
command:uvicornmain:app--host0.0.0.0--port8000--reload# Enable auto-reload
environment:
-PYTHONDONTWRITEBYTECODE=1# Prevents Python from writing .pyc files
-PYTHONUNBUFFERED=1# Ensures Python output is sent straight to terminal
postgres:
image:ankane/pgvector:v0.5.1
restart:on-failure
shmsize:"128mb"# Increase this if vacuuming fails with a "no space left on device" error
networks:
-mem0network
environment:
-POSTGRESUSER=postgres
-POSTGRESPASSWORD=postgres
healthcheck:
test: ["CMD", "pgisready", "-q", "-d", "postgres", "-U", "postgres"]
interval:5s
timeout:5s
retries:5
volumes:
-postgresdb:/var/lib/postgresql/data
ports:
-"8432:5432"
neo4j:
image:neo4j:5.26.4
networks:
-mem0network
healthcheck:
test:wgetbolt://neo4j:8687||exit1
interval:1s
timeout:10s
retries:20
startperiod:90s
ports:
-"8474:7474"# HTTP
-"8687:7687"# Bolt
volumes:
-./neo4j/data:/data# 将 Neo4j 数据存储到 mem0 目录
-./neo4j/logs:/logs# 将 Neo4j 日志存储到 mem0 目录
-./neo4j/import:/var/lib/neo4j/import# 将 Neo4j 导入目录存储到 mem0 目录
environment:
-NEO4JAUTH=neo4j/mem0graph
-NEO4JPLUGINS=["apoc"]# Add this line to install APOC
-NEO4Japocexportfileenabled=true
-NEO4Japocimportfileenabled=true
-NEO4Japocimportfileuseneo4jconfig=true
volumes:
neo4jdata:
postgresdb:
networks:
mem0network:
driver:bridge
启动 docker
docker compose up
,可以发现控制台打印如下信息

此时 mem0-dev 下将有三个服务:neo4j、postgres、mem0

访问对应的 swagger:http://localhost:8888/docs

同时也可以看到 http://localhost:7474/控制台界面

Spring ai alibaba 接入 mem0
pom 文件
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-autoconfigure-model-chat-client</artifactId>
</dependency>
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-memory-mem0</artifactId>
<version>1.0.0.4-SNAPSHOT</version>
</dependency>
</dependencies>
1.0.0.4-SNAPSHOT 尚未发布,请自行下载 spring-ai-alibaba 仓库去下载源码
application.yml
server:
port:8080
tomcat:
connection-timeout:60000
spring:
ai:
dashscope:
api-key:${AIDASHSCOPEAPIKEY}
alibaba:
mem0:
client:
base-url:http://127.0.0.1:8888
timeout-seconds:120
server:
version:v0.1.116
vector-store:
provider:pgvector
config:
host:${POSTGRESHOST:postgres}
port:${POSTGRESPORT:5432}
dbname:${POSTGRESDB:postgres}
user:${POSTGRESUSER:postgres}
password:${POSTGRESPASSWORD:postgres}
collection-name:${POSTGRESCOLLECTIONNAME:memories}
graph-store:
provider:neo4j
config:
url:${NEO4JURI:bolt://neo4j:7687}
username:${NEO4JUSERNAME:neo4j}
password:${NEO4JPASSWORD:mem0graph}
llm:
provider:deepseek
config:
api-key:${DEEPSEEKAPIKEY}
temperature:0.2
model:deepseek-chat# qwen现在因为json结构问题不可用了,改为使用官方支持的DeepSeek
# openai-base-url: https://dashscope.aliyuncs.com/compatible-mode/v1
embedder:
provider:openai
config:
api-key:${AIDASHSCOPEAPIKEY}
model:text-embedding-v4
openai-base-url:https://dashscope.aliyuncs.com/compatible-mode/v1
custom-fact-extraction-prompt:classpath:/prompts/customfactextractionprompt.st
Mem0MemoryController
package com.spring.ai.tutorial.advisor.memory.controller;
import com.alibaba.cloud.ai.memory.mem0.advisor.Mem0ChatMemoryAdvisor;
import com.alibaba.cloud.ai.memory.mem0.core.Mem0ServiceClient;
import com.alibaba.cloud.ai.memory.mem0.model.Mem0ServerRequest;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.document.Document;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
import java.util.Map;
importstatic com.alibaba.cloud.ai.memory.mem0.advisor.Mem0ChatMemoryAdvisor.USERID;
/**
* @author morain.miao
* @date 2025/06/23 11:54
* @description mem0的一些应用
*/
@RestController
@RequestMapping("/advisor/memory/mem0")
publicclassMem0MemoryController {
privatestaticfinalLoggerlogger= LoggerFactory.getLogger(Mem0MemoryController.class);
privatefinal ChatClient chatClient;
privatefinal VectorStore store;
privatefinal Mem0ServiceClient mem0ServiceClient;
publicMem0MemoryController(ChatClient.Builder builder, VectorStore store, Mem0ServiceClient mem0ServiceClient) {
this.store = store;
this.mem0ServiceClient = mem0ServiceClient;
this.chatClient = builder
.defaultAdvisors(
Mem0ChatMemoryAdvisor.builder(store).build()
)
.build();
}
@GetMapping("/call")
public String call(@RequestParam(value = "query", defaultValue = "你好,我是万能的喵,我爱玩三角洲行动") String message,
@RequestParam(value = "userid", defaultValue = "miao") String userId
) {
return chatClient.prompt(message)
.advisors(
a -> a.params(Map.of(USERID, userId))
)
.call().content();
}
@GetMapping("/messages")
public List messages(
@RequestParam(value = "query", defaultValue = "我的爱好是什么?") String query,
@RequestParam(value = "userid", defaultValue = "miao") String userId) {
Mem0ServerRequest.SearchRequestsearchRequest= Mem0ServerRequest.SearchRequest.builder().query(query).userId(userId).build();
return store.similaritySearch(searchRequest);
}
@GetMapping("/test")
publicvoidtest(){
//用户和Agent的长期记忆
mem0ServiceClient.addMemory(
Mem0ServerRequest.MemoryCreate.builder()
.agentId("agent2")
.userId("test2")
.messages(List.of(
newMem0ServerRequest.Message("user", "I"m travelling to San Francisco"),
newMem0ServerRequest.Message("assistant", "That"s great! I"m going to Dubai next month."))
)
.build());
logger.info("用户和agent的长期记忆保存成功");
// 获取用户和agent的长期记忆
List documents = store.similaritySearch(Mem0ServerRequest.SearchRequest.builder().userId( "test2").agentId("agent2").build());
logger.info("agent的长期记忆: {}", documents);
}
}
效果
调用 call 接口,将记忆存储至 mem0 中(ps:该接口目前响应速度很慢,长达 1 分钟待后续优化)

调用 messages,取出存在 mem0 的记忆

同时进入 docker 容器中,看到 mem0 服务的日志记录

相关数据后续还会在该目录展示

往期资料

Spring AI + Spring Ai Aliabba系统化学习资料
本教程将采用2025年5月20日正式的GA版,给出如下内容
1. 核心功能模块的快速上手教程 2. 核心功能模块的源码级解读 3. Spring ai alibaba增强的快速上手教程 + 源码级解读
版本:
• JDK21 • SpringBoot3.4.5 • SpringAI 1.0.1 • SpringAI Alibaba 1.0.3+
免费渠道:
1. 为Spring Ai Alibaba开源社区解决解决有效的issue or 提供有价值的PR,可免费获取上述教程 2. 往届微信推文
收费服务:收费69.9元
1. 飞书在线云文档 2. Spring AI会员群教程代码答疑
学习交流圈
你好,我是影子,曾先后在🐻、新能源、老铁就职,兼任Spring AI Alibaba开源社区的Committer。我的过往,普通人成长的真实路径
目前新建了一个交流群,一个人走得快,一群人走得远,关注公众号后可获得个人微信,添加微信后备注“交流”入群。另外,本人长期维护一套飞书云文档笔记,涵盖后端、大数据系统化的面试资料,可私信免费获取


如果您有学业规划、职场进阶的困扰欢迎咨询,我将站在我现有的理解给出最真诚的建议;同时欢迎投稿分享您的真实经历与思考,无论是逆袭故事还是曾经踩过的坑,一经采用将支付稿费,让您的的经验能让更多人受益
我也将有偿提供如下服务
• 1 vs 1 升学、职业 咨询:300 / h • 简历修改:200元 / 份