AI热点 1月前 139 阅读 0 评论

MIT 新研究指出 AI 不懂“no”,逻辑推理缺陷导致否定词成“盲区”

作者头像

AI技术专栏作家 | 发布了 246 篇文章

MIT 新研究指出 AI 不懂“no”,逻辑推理缺陷导致否定词成“盲区”
MIT 新研究指出 AI 不懂“no”,逻辑推理缺陷导致否定词成“盲区”

IT之家 5 月 22 日消息,麻省理工学院(MIT)最新研究表明,人工智能(AI)在理解“no”和“not”等否定词方面仍存在明显缺陷,在医疗等关键领域可能引发严重风险。

研究表明,AI 已快速发展,具备诊断疾病、创作诗歌甚至驾驶汽车等多项实用技能,但对“no”和“not”等否定词,却束手无策。

在博士生 Kumail Alhamoud 的带领下,MIT 团队联合 OpenAI 和牛津大学,发现包括 ChatGPT、Gemini 和 Llama 在内的当前主流模型,在处理否定语句时,常倾向于默认肯定关联,忽略否定语义。

研究报告认为,这种情况在医疗场景产生的潜在危害尤为明显。例如,AI 可能误解“no fracture”(无骨折)或“not enlarged”(未扩大),导致严重后果。

IT之家援引博文介绍,问题的根源并非数据不足,而是 AI 的训练方式。斯坦福大学深度学习兼职教授 Kian Katanforoosh 指出,大多数语言模型依赖模式预测,而非逻辑推理。

这导致 AI 在面对“not good”(不好)时,仍可能因“good”一词而误判为正面情绪。专家强调,若不赋予模型逻辑推理能力,类似细微却致命的错误将持续发生。

Lagrange Labs 首席研究工程师 Franklin Delehelle 也表示,AI 擅长模仿训练数据中的模式,但缺乏创新或处理训练数据之外情境的能力。

研究团队通过合成否定数据(synthetic negation data)尝试改进模型,取得初步成效,但细粒度的否定差异仍具挑战性。

Katanforoosh 警告,AI 对否定的误解不仅是一项技术缺陷,更可能在法律、医疗和人力资源等领域引发关键错误。他呼吁,解决之道不在于堆砌更多数据,而在于结合统计学习与结构化思维,提升模型的逻辑能力。

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

作者头像

AI前线

专注人工智能前沿技术报道,深入解析AI发展趋势与应用场景

246篇文章 1.2M阅读 56.3k粉丝

评论 (128)

用户头像

AI爱好者

2小时前

这个更新太令人期待了!视频分析功能将极大扩展AI的应用场景,特别是在教育和内容创作领域。

用户头像

开发者小明

昨天

有没有人测试过新的API响应速度?我们正在开发一个实时视频分析应用,非常关注性能表现。

作者头像

AI前线 作者

12小时前

我们测试的平均响应时间在300ms左右,比上一代快了很多,适合实时应用场景。

用户头像

科技观察家

3天前

GPT-4的视频处理能力已经接近专业级水平,这可能会对内容审核、视频编辑等行业产生颠覆性影响。期待看到更多创新应用!